首页> 外文OA文献 >A cutting-plane approach for large-scale capacitated multi-period facility location using a specialized interior-point method
【2h】

A cutting-plane approach for large-scale capacitated multi-period facility location using a specialized interior-point method

机译:使用专门的内点法进行大规模容量多周期设施定位的切割平面方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We propose a cutting-plane approach (namely, Benders decomposition) for a class of capacitated multi-period facility location problems. The novelty of this approach lies on the use of a specialized interior-point method for solving the Benders subproblems. The primal block-angular structure of the resulting linear optimization\udproblems is exploited by the interior-point method, allowing the (either exact or inexact) efficient solution of large instances. The consequences of different modeling\udconditions and problem specifications on the computational performance are also investigated both theoretically and empirically, providing a deeper understanding of the significant factors influencing the overall efficiency of the cutting-plane method.\udThe methodology proposed allowed the solution of instances of up to 200 potential locations, one million customers and three periods, resulting in mixed integer linear optimization problems of up to 600 binary and 600 millions of continuous variables. Those problems were solved by the specialized approach in less than one hour and a half, outperforming other state-of-the-art methods, which exhausted the (144 Gigabytes of) available memory in the largest instances.
机译:对于一类有能力的多周期设施选址问题,我们提出了一种切平面方法(即Benders分解)。这种方法的新颖之处在于使用专门的内点方法来解决Benders子问题。通过内点方法来利用所得线性优化\问题的原始块角结构,从而可以(精确或不精确)有效地解决大型实例。还从理论和经验上研究了不同建模\条件和问题规范对计算性能的影响,从而更深入地了解了影响切面方法整体效率的重要因素。\ ud所提出的方法可以解决实例问题多达200个潜在位置,一百万个客户和三个期间,导致多达600个二进制和6亿个连续变量的混合整数线性优化问题。这些问题通过专用方法在不到一个半小时的时间内解决了,胜过其他最新方法,这些方法在最大的实例中耗尽了(144 GB)的可用内存。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号